Home > News > News Room > Silicon Labs : Convince Buyers by Designing More Secure Wi-Fi Devices

News

Silicon Labs : Convince Buyers by Designing More Secure Wi-Fi Devices

15/02/2024

Research: 72% of Smart Home Users are Concerned with Security – How to Convince Buyers with Better Wi-Fi Device Security?

The research firm Parks Associates reports that 72 percent of smart home product owners are concerned with the security of the personal data collected by their devices. Among all US internet households, nearly 50 percent have experienced at least one privacy or security issue in the past year. And 30 percent of those who don’t own or intend to buy Smart Home products say that the reason is… guess what, privacy and security concerns!

Lack of consumer trust is a significant barrier to full-scale Smart Home market take-off, and device manufacturers suffer the most – the slowed-down growth prevents them from cashing in their maximum revenue potential from the market.

Is There a Solution to Convince Buyers of Better Smart Home Device Security?

Yes, there is, and it starts with Wi-Fi, the most popular and fastest-growing wireless technology in homes worldwide. The sheer volume of Wi-Fi-connected Smart Home devices out in the market, such as cameras, video doorbells, sensors, lights, switches, and home appliances, make them highly exploited attack surfaces, jeopardizing product owners’ private data and property, and thus holding consumers back with their buying decisions.

Why are Wi-Fi Devices so Vulnerable?

One reason could be that many device manufacturers rely mostly upon standard Wi-Fi Protected Access (WPA, WPA2, WPA3) and Transport Layer Security (TLS). Unfortunately, these security features cannot protect the devices and users from all attack types. In fact, logical attacks, including buffer overflow attacks and over-the-air (OTA) code injection attacks, account for more than 50% of all attack vectors, many of which are beyond the protection capabilities of the Wi-Fi protocol and transport layer security features.

Who Can Fix Smart Home Device Security?

If the solution lies beyond what the Wi-Fi and transport layer protocols can do, then the manufacturers of Wi-Fi devices are in the best position to fix the Smart Home device security. They can enhance the security capabilities of their devices to complement the protection provided by e.g., WPA and TLS. By safeguarding their devices with robust end-point security, manufacturers can differentiate themselves through trust, stand behind the value proposition of better privacy, and convince buyers at retail stores to make the next purchase decision in their favor.

How Can Silicon Labs Improve Wi-Fi Device Security?

How can Silicon Labs help device manufacturers convince Smart Home buyers of better privacy?

Silicon Labs is renowned as the technology leader in IoT security. Our Wi-Fi System-on-Chip (SoC) solutions SiWx917 and SiWx915 comprises several crucial device security features that few other Wi-Fi vendor in IoT can offer in a single package, complementing the commonly used WPA and TLS.

The following sections explain our Wi-Fi security solution for IoT devices:

Secure Boot

Malicious code insertion is a common security threat for wirelessly connected devices, including Smart Home. Malware is inserted by a hacker to hijack the smart device to execute the wrong software in boot-up instead of the manufacturer’s authentic code. Silicon Labs SiWx917 and SiWx915 can help device makers eliminate malware insertion threats through its Secure Boot feature.

Secure Over-the-Air Update

Most Smart Home devices can have years of operational life. Software might have to be updated several times during this time. Each update represents a potential attack vector for hackers. Silicon Labs Wi-Fi 6 SoCs provide you with over-the-air (OTA) firmware updates, authenticating the source of the update file, encrypting the updating process, and guaranteeing an unaltered firmware image is used via the secure boot. Our secure OTA process can ensure your Wi-Fi devices execute an authentic file during software updates.

Anti-Rollback

Rolling a device’s firmware back to an older, vulnerable version is a potential attack vector, putting your installed base of Wi-Fi devices under threat. The Anti Rollback protection on Silicon Labs SiWx917 and SiWx915 prevents downgrading the device to an older version of its software, ensuring that earlier, potentially vulnerable versions cannot be used maliciously.

Secure Debug

Everyone familiar with programming knows that leaving the debug port unprotected can give hackers easy access to the internal computer architecture. The same applies to Wi-Fi Smart Home devices. SiWx917 and SiWx915 solve this with a secure debug mechanism – the debug port is locked by default and can be unlocked with an encrypted token to prevent unauthorized access to your Smart Home devices

Secure Zone

Secure Zone logically separates the memory into a secure processing environment (SPE) and a non-secure processing environment (NSPE). Only a predefined and restricted list of commands can be passed between these zones through an API, minimizing SPE exposure and securing the data stored there. On SiWx917 and SiWx915, Secure Zone prevents, e.g., external peripherals, host processors, and Cortex-M4 application core from accessing the security processor, memory, and HW registers directly.

Secure Key Management

Hackers typically probe devices with various attempts to expose secret keys stored in flash memory. When a successful attack vector is found, it can be used to attack an entire installed base of similar devices. Secure key management is perhaps the number 1 challenge for wireless device makers. Silicon Labs’ Wi-Fi device security enables you to protect keys through the Physically Unclonable Function (PUF) and a True Random Number Generator (TRNG). The cryptographic keys are saved in an encrypted format using the keys from the PUF block, keeping your keys confidential, and improving the security of your Smart Home devices.

True Random Number Generator

Random numbers are core to the security of any smart device, such as Smart Home. However, generating a truly random number is complicated. Hackers can use any bias in the numbers to reduce the effort and time to acquire keys. Pseudo Random Number Generators (PRNG) are prone to this vulnerability. SiWx917 and SiWx915 Wi-Fi SoCs use a True Random Number Generator (TRNG) that generates secret, high-entropy data based on RF noise, increasing the protection of your users.

Encrypted XIP

Silicon Labs’ SiWx917 and SiWx915 can be configured to use Execution in Place (XiP) with authenticated encryption to ensure external code is unmodified at the time of execution in PSRAM setups. To increase protection for the entire device, the software images are stored in an encrypted format and decrypted on the fly using the AES engine based on the PUF intrinsic keys specific to each device.

Conclusion: Convince Buyers by Designing More Secure Wi-Fi Devices

Global Smart Home revenue is expected to grow at an average rate (CAGR) of 11 percent in 2022-2028 and reach USD 232 billion at the end of the period*. However, as the Park Associates’ research found, most of the Smart Home product owners still don’t trust the security, and 30 percent of those on the fence with their buying decisions leave the products to the store for the same reason. This leads us back to the blog’s original question: How to convince Smart Home buyers with better Wi-Fi device security?   Silicon Labs is here to help you with two highly secure Wi-Fi 6 solutions: SiWx917, which is an advanced ultra-low-power solution for battery-powered IoT devices, and SiWx915, which provides streamlined multiprotocol wireless and computing for line-powered devices!

SPECIALIST NEWS
  • 08/09/2023

    RSA Design: LORA

  • 22/08/2023

    FG23 Wireless Sub-GHz SoC

    Silicon Labs’ wireless sub-GHz SoC enables Amazon Sidewalk, mioty, Wireless M-Bus, and Z-Wave Silicon Labs’ FG23 is the industry’s first wireless sub-GHz SoC with an Arm® Cortex®-M33, a dedicated security core and Arm PSA3 certification. The device improves on the leading RF performance of Series 1 and now enables 10+ year coin cell battery operation. The […]

  • 23/08/2023

    STEVAL-IDS001V3, Demonstration Board based on the SPIRIT1 Low data-rate, short-range USB dongle transceiver in 433-MHz band

    Description STEVAL-IDS001V3, Demonstration Board based on the SPIRIT1 Low data-rate, short-range USB dongle transceiver in 433-MHz band. The STEVAL-IDS001V4 demonstration board is based on the SPIRIT1, which is a sub-GHz low power, low data-rate transceiver suitable for ISM bands and Wireless M-BUS. The board is equipped with an STM32L low power microcontroller to control the […]

  • 22/08/2023

    Silicon Labs xG28 Now Available; Helping Customers Like Chamberlain Group and Honeywell with Long-Range Applications at the Edge

    In June, we announced our dual-band FG28 SoC, designed for long-range networks and protocols like Amazon Sidewalk, Wi-SUN, and other proprietary protocols. Today, we’re excited to share that the FG28 is now generally available through Silicon Labs and our distribution partners. Learn more about the dual-band FG28 SoC here. We’re also extending our xG28 family of SoCs with the ZG28, […]

  • 31/07/2023

    FG25 Sub-GHz SoC Now Available for Smart Cities and Long-Range Deployments

    During our Works With 2022 Developer Conference, we announced our new flagship sub-Ghz SoC, the FG25, and today we are pleased to announce that it is generally available through Silicon Labs and our distribution partners. The FG25 is the ideal SoC (system on chip) for long-range, low-power transmissions, capable of broadcasting up to 1.6km with minimal data […]

  • 31/07/2023

    Smart City Living Lab Series: Making Hyderabad, India a Smarter City with Wi-SUN

    Specifically designed for smart cities, Wireless Smart Ubiquitous Network (Wi-SUN) is a protocol for low-power Internet of Things (IoT) mesh networks. With its scalability, security, interoperability, and support for a wide range of existing and emerging apps, Wi-SUN is an excellent foundation for sustainable city operations and, ultimately, better quality of life for residents. Cities around […]

  • 27/07/2023

    Smart City Living Lab Wi-SUN FAN 1.1 Mesh Deployment – Phase 2

    As part of the ongoing blog series on the Smart City Living Lab at IIIT Hyderabad, this second post will delve deeper into the details of the inner workings of the state-of-the-art Wi-SUN-enabled Smart City Living Lab. The lab, which stands as a testament to the immense potential of IoT in daily life, mirrors a Smart City on […]