Home > News > News Room > Infineon’s new CoolSiC™ MOSFETs 2000 V offer increased power density without compromising system reliability

News

Infineon’s new CoolSiC™ MOSFETs 2000 V offer increased power density without compromising system reliability

26/03/2024

Infineon Technologies AG (FSE: IFX / OTCQX: IFNNY) introduces the new CoolSiC™ MOSFETs 2000 V in the TO-247PLUS-4-HCC package to meet designers’ demand for increased power density without compromising the system’s reliability even under demanding high voltage and switching frequency conditions. The CoolSiC MOSFETs offer a higher DC link voltage so that the power can be increased without increasing the current. It is the first discrete silicon carbide device with a breakdown voltage of 2000 V on the market and comes in a TO-247PLUS-4-HCC package with a creepage distance of 14 mm and clearance distance of 5.4 mm. With low switching losses, the devices are ideal for solar (e.g. string inverters) as well as energy storage systems and electric vehicle charging applications.

The CoolSiC MOSFET 2000 V product family is ideally suited for high DC link systems with up to 1500 V DC. Compared to 1700 V SiC MOSFETs, the devices also provide a sufficiently high overvoltage margin for 1500 V DC systems. The CoolSiC MOSFETs deliver a benchmark gate threshold voltage of 4.5 V and are equipped with a robust body diode for hard commutation. Due to the .XT connection technology, the components offer first-class thermal performance. They are also highly resistant to humidity.

In addition to the CoolSiC MOSFETs 2000 V, Infineon will soon be launching the matching CoolSiC diodes: The first launch will be the 2000 V diode portfolio in the TO-247PLUS 4-pin package in the third quarter of 2024, followed by the 2000 V CoolSiC diode portfolio in the TO-247-2 package in the final quarter of 2024. These diodes are particularly suitable for solar applications. A matching gate driver portfolio is also available.

650 V up to 2000 V CoolSiC™ MOSFET discretes ideally suited for hard- and resonant-switching topologies

Infineon CoolSiC™ MOSFETs are built on a state-of-the-art trench semiconductor process optimized to allow for both the lowest losses in the application and the highest reliability in operation. The discrete CoolSiC™ MOSFET portfolio comes in 650 V, 750 V, 1200 V, 1700 V and 2000 V voltages classes, with on-resistance ratings from 7 mΩ up to 1000 mΩ. CoolSiC™ trench technology enables a flexible parameter-set, which is used for implementation of application-specific features in respective product portfolios, e.g.: gate-source voltages, avalanche specification, short-circuit capability, or internal body diode rated for hard commutation.

Our range of 650 V CoolSiC™ MOSFETs offer optimized switching behaviors at high currents and low capacitances and are designed for a variety of industrial applications including, serverstelecommotor drives, and more. The 750 V and 1200 V MOSFET range is available for both industrial and automotive qualified applications, such as on-board charger/PFCauxiliary inverters, and uninterruptible power supply (UPS). The selection of 1700 V CoolSiC™ MOSFET is offered with flyback typology that can be used in energy storage systemsfast EV chargingpower management (SMPS, and solutions for solar energy systems. Lastly, the 2000 V CoolSiC™ MOSFET offers increased power density and voltage margin, designated for high voltage applications such as fast EV charging, and solutions for solar energy systems.

SPECIALIST NEWS
  • 08/09/2023

    RSA Design: LORA

  • 22/08/2023

    FG23 Wireless Sub-GHz SoC

    Silicon Labs’ wireless sub-GHz SoC enables Amazon Sidewalk, mioty, Wireless M-Bus, and Z-Wave Silicon Labs’ FG23 is the industry’s first wireless sub-GHz SoC with an Arm® Cortex®-M33, a dedicated security core and Arm PSA3 certification. The device improves on the leading RF performance of Series 1 and now enables 10+ year coin cell battery operation. The […]

  • 23/08/2023

    STEVAL-IDS001V3, Demonstration Board based on the SPIRIT1 Low data-rate, short-range USB dongle transceiver in 433-MHz band

    Description STEVAL-IDS001V3, Demonstration Board based on the SPIRIT1 Low data-rate, short-range USB dongle transceiver in 433-MHz band. The STEVAL-IDS001V4 demonstration board is based on the SPIRIT1, which is a sub-GHz low power, low data-rate transceiver suitable for ISM bands and Wireless M-BUS. The board is equipped with an STM32L low power microcontroller to control the […]

  • 22/08/2023

    Silicon Labs xG28 Now Available; Helping Customers Like Chamberlain Group and Honeywell with Long-Range Applications at the Edge

    In June, we announced our dual-band FG28 SoC, designed for long-range networks and protocols like Amazon Sidewalk, Wi-SUN, and other proprietary protocols. Today, we’re excited to share that the FG28 is now generally available through Silicon Labs and our distribution partners. Learn more about the dual-band FG28 SoC here. We’re also extending our xG28 family of SoCs with the ZG28, […]

  • 31/07/2023

    FG25 Sub-GHz SoC Now Available for Smart Cities and Long-Range Deployments

    During our Works With 2022 Developer Conference, we announced our new flagship sub-Ghz SoC, the FG25, and today we are pleased to announce that it is generally available through Silicon Labs and our distribution partners. The FG25 is the ideal SoC (system on chip) for long-range, low-power transmissions, capable of broadcasting up to 1.6km with minimal data […]

  • 31/07/2023

    Smart City Living Lab Series: Making Hyderabad, India a Smarter City with Wi-SUN

    Specifically designed for smart cities, Wireless Smart Ubiquitous Network (Wi-SUN) is a protocol for low-power Internet of Things (IoT) mesh networks. With its scalability, security, interoperability, and support for a wide range of existing and emerging apps, Wi-SUN is an excellent foundation for sustainable city operations and, ultimately, better quality of life for residents. Cities around […]

  • 27/07/2023

    Smart City Living Lab Wi-SUN FAN 1.1 Mesh Deployment – Phase 2

    As part of the ongoing blog series on the Smart City Living Lab at IIIT Hyderabad, this second post will delve deeper into the details of the inner workings of the state-of-the-art Wi-SUN-enabled Smart City Living Lab. The lab, which stands as a testament to the immense potential of IoT in daily life, mirrors a Smart City on […]