Home > News > News Room > Infineon advances automotive and industrial solutions with newly launched CoolSiC™ MOSFET 750 V G1 product family

News

Infineon advances automotive and industrial solutions with newly launched CoolSiC™ MOSFET 750 V G1 product family

29/02/2024

Infineon Technologies AG (FSE: IFX / OTCQX: IFNNY) introduces the 750V G1 discrete CoolSiC™ MOSFET to meet the increasing demand for higher efficiency and power density in industrial and automotive power applications. The product family includes both industrial-graded and automotive-graded SiC MOSFETs that are optimized for totem-pole PFC, T-type, LLC/CLLC, dual active bridge (DAB), HERIC, buck/boost, and phase-shifted full bridge (PSFB) topologies. The MOSFETs are ideal for use in both typical industrial applications, such as electric vehicle chargingindustrial drivessolar and energy storage systemssolid state circuit breakerUPS systemsserversdatacenterstelecom, and in the automotive sector, such as onboard chargers (OBC), DC-DC converters, and many more.

The CoolSiC MOSFET 750 V G1 technology features excellent RDS (on) x Q fr and superior  RDS (on) x Q oss Figure-of-Merits (FOMs), resulting in ultra-high efficiency in hard-switching and soft-switching topologies respectively. Its unique combination of high threshold voltage (V GS(th), Typ. of 4.3 V) with low Q GD/Q GS ratio ensures high robustness against parasitic turn-on and enables unipolar gate driving, leading to increased power density and low cost of the systems. All devices use Infineon’s proprietary die-attach technology which delivers outstanding thermal impedance for equivalent die sizes. The highly reliable gate oxide design combined with Infineon’s qualification standards delivers robust and long-term performance.

With a granular portfolio ranging from 8 to 140 mΩ RDS (on) at 25°C, this new CoolSiC MOSFET 750 V G1 product family meets a wide range of needs. Its design ensures lower conduction and switching losses, boosting overall system efficiency. Its innovative packages minimize thermal resistance, facilitate improved heat dissipation, and optimize in-circuit power loop inductance, thereby resulting in high power density and reduced system costs. It’s important to note that this product family features the cutting-edge QDPAK top-side cooled package.

Availability

The CoolSiC MOSFET 750 V G1 for automotive applications comes in QDPAK TSC, D2PAK-7L, and TO-247-4 packages, while for industrial applications, QDPAK TSC and TO-247-4 packages are offered.

650 V up to 2000 V CoolSiC™ MOSFET discretes ideally suited for hard- and resonant-switching topologies

Infineon CoolSiC™ MOSFETs are built on a state-of-the-art trench semiconductor process optimized to allow for both the lowest losses in the application and the highest reliability in operation. The discrete CoolSiC™ MOSFET portfolio comes in 650 V, 750 V, 1200 V, 1700 V and 2000 V voltages classes, with on-resistance ratings from 7 mΩ up to 1000 mΩ. CoolSiC™ trench technology enables a flexible parameter-set, which is used for implementation of application-specific features in respective product portfolios, e.g.: gate-source voltages, avalanche specification, short-circuit capability, or internal body diode rated for hard commutation.

Our range of 650 V CoolSiC™ MOSFETs offer optimized switching behaviors at high currents and low capacitances and are designed for a variety of industrial applications including, serverstelecommotor drives, and more. The 750 V and 1200 V MOSFET range is available for both industrial and automotive qualified applications, such as on-board charger/PFCauxiliary inverters, and uninterruptible power supply (UPS). The selection of 1700 V CoolSiC™ MOSFET is offered with flyback typology that can be used in energy storage systemsfast EV chargingpower management (SMPS, and solutions for solar energy systems. Lastly, the 2000 V CoolSiC™ MOSFET offers increased power density and voltage margin, designated for high voltage applications such as fast EV charging, and solutions for solar energy systems.

CoolSiC™ MOSFETs in discrete packages are ideally suited for both hard- and resonant-switching topologies like power factor correction (PFC) circuits, bi-directional topologies, and DC-DC converters or DC-AC inverters. An excellent immunity against unwanted parasitic turn-on effects creates a benchmark in low dynamic loss, even at zero volt turn-off voltage in bridge topologies. Our TO- and SMD offering comes also with Kelvin-source pins for optimized switching performance.

We complete the SiC discrete offering with a range of selected driver IC products fulfilling the needs of the ultrafast SiC MOSFET switching feature. Together, CoolSiC™ MOSFETs and EiceDRIVER™ gate driver ICs leverage the advantage of SiC technology: improved efficiency, space, and weight savings, part count reduction, enhanced system reliability.

SPECIALIST NEWS
  • 08/09/2023

    RSA Design: LORA

  • 22/08/2023

    FG23 Wireless Sub-GHz SoC

    Silicon Labs’ wireless sub-GHz SoC enables Amazon Sidewalk, mioty, Wireless M-Bus, and Z-Wave Silicon Labs’ FG23 is the industry’s first wireless sub-GHz SoC with an Arm® Cortex®-M33, a dedicated security core and Arm PSA3 certification. The device improves on the leading RF performance of Series 1 and now enables 10+ year coin cell battery operation. The […]

  • 23/08/2023

    STEVAL-IDS001V3, Demonstration Board based on the SPIRIT1 Low data-rate, short-range USB dongle transceiver in 433-MHz band

    Description STEVAL-IDS001V3, Demonstration Board based on the SPIRIT1 Low data-rate, short-range USB dongle transceiver in 433-MHz band. The STEVAL-IDS001V4 demonstration board is based on the SPIRIT1, which is a sub-GHz low power, low data-rate transceiver suitable for ISM bands and Wireless M-BUS. The board is equipped with an STM32L low power microcontroller to control the […]

  • 22/08/2023

    Silicon Labs xG28 Now Available; Helping Customers Like Chamberlain Group and Honeywell with Long-Range Applications at the Edge

    In June, we announced our dual-band FG28 SoC, designed for long-range networks and protocols like Amazon Sidewalk, Wi-SUN, and other proprietary protocols. Today, we’re excited to share that the FG28 is now generally available through Silicon Labs and our distribution partners. Learn more about the dual-band FG28 SoC here. We’re also extending our xG28 family of SoCs with the ZG28, […]

  • 31/07/2023

    FG25 Sub-GHz SoC Now Available for Smart Cities and Long-Range Deployments

    During our Works With 2022 Developer Conference, we announced our new flagship sub-Ghz SoC, the FG25, and today we are pleased to announce that it is generally available through Silicon Labs and our distribution partners. The FG25 is the ideal SoC (system on chip) for long-range, low-power transmissions, capable of broadcasting up to 1.6km with minimal data […]

  • 31/07/2023

    Smart City Living Lab Series: Making Hyderabad, India a Smarter City with Wi-SUN

    Specifically designed for smart cities, Wireless Smart Ubiquitous Network (Wi-SUN) is a protocol for low-power Internet of Things (IoT) mesh networks. With its scalability, security, interoperability, and support for a wide range of existing and emerging apps, Wi-SUN is an excellent foundation for sustainable city operations and, ultimately, better quality of life for residents. Cities around […]

  • 27/07/2023

    Smart City Living Lab Wi-SUN FAN 1.1 Mesh Deployment – Phase 2

    As part of the ongoing blog series on the Smart City Living Lab at IIIT Hyderabad, this second post will delve deeper into the details of the inner workings of the state-of-the-art Wi-SUN-enabled Smart City Living Lab. The lab, which stands as a testament to the immense potential of IoT in daily life, mirrors a Smart City on […]