Home > News > News Room > Microchip Introduces Industry’s First Low Pin Count MCU Family With I3C Support

News

Microchip Introduces Industry’s First Low Pin Count MCU Family With I3C Support

26/10/2023

With the step-function increase in data collected and transmitted from cloud-connected edge nodes, Improved Inter Integrated Circuit® (I3C®) is rapidly becoming a more sustainable solution for interfacing sensors with a high data rate and will help expand capabilities in next-generation devices. Leading the way in I3C integration, Microchip Technology (Nasdaq: MCHP) has released its PIC18-Q20 family of microcontrollers (MCUs), the industry’s first low pin count MCUs with up to two I3C peripherals and Multi-Voltage I/O (MVIO). Available in 14- and 20- pin packages as small as 3 x 3 mm, the PIC18-Q20 MCUs are a compact solution for real-time control, touch sensing and connectivity applications. The MCUs offer configurable peripherals, advanced communication interfaces and easy connection across multiple voltage domains without external components.

With I3C functionality, flexible peripherals and the ability to operate on three independent voltage domains, PIC18-Q20 MCUs are well suited to be used in conjunction with a primary MCU in a larger overall system. This family of MCUs can perform tasks such as processing sensor data, handling low latency interrupts and system status reporting that the main MCU cannot perform as efficiently. While the Central Processing Unit (CPU) runs at a different voltage domain, the I3C peripheral operates from 1.0 to 3.6V. These low-power, small form factor MCUs can be used in a wide range of space-sensitive applications and markets including automotive, industrial control, computing, consumer, IoT and medical.

“One of the main barriers to large-scale IoT adoption is the cost of implementing an edge node. With the PIC18-Q20 family of MCUs, Microchip is helping to break down that barrier,” said Greg Robinson, corporate vice president of Microchip’s 8-bit MCU business unit. “By introducing the industry’s first low pin count MCU with I3C we are enabling flexible, cost-effective scaling of IoT applications and embracing the new standard communications interface.”

As the market shifts to demand higher performance solutions with lower power and smaller size, I3C helps designers and software developers address these potentially challenging requirements. Compared to I2C, I3C offers higher communication rates and lower power consumption, all while maintaining backward compatibility with legacy systems. The I3C and MVIO functionality, combined with Microchip’s configurable Core Independent Peripherals (CIPs), allow for lower system costs, reduced design complexity and a reduction in board space by replacing external level shifters with on-chip multiple voltage domains.

Development Tools
The PIC18-Q20 MCU family is supported by Microchip’s full development ecosystem of hardware and software tools, including its MPLAB® X and MPLAB Xpress Integrated Development Environments (IDEs) and MPLAB Code Configurator (MCC). Microchip’s development environment is straightforward and makes it easier to implement and generate code, allowing for a reduction in overall development time and reduced financial investment.

Developers can get a quick start in evaluating I3C and MVIO capabilities on the PIC18-Q20 using Microchip’s PIC18F16Q20 Curiosity Nano Evaluation Kit—a compact, cost-effective development board for rapid prototyping.

SPECIALIST NEWS
  • 08/09/2023

    RSA Design: LORA

  • 22/08/2023

    FG23 Wireless Sub-GHz SoC

    Silicon Labs’ wireless sub-GHz SoC enables Amazon Sidewalk, mioty, Wireless M-Bus, and Z-Wave Silicon Labs’ FG23 is the industry’s first wireless sub-GHz SoC with an Arm® Cortex®-M33, a dedicated security core and Arm PSA3 certification. The device improves on the leading RF performance of Series 1 and now enables 10+ year coin cell battery operation. The […]

  • 23/08/2023

    STEVAL-IDS001V3, Demonstration Board based on the SPIRIT1 Low data-rate, short-range USB dongle transceiver in 433-MHz band

    Description STEVAL-IDS001V3, Demonstration Board based on the SPIRIT1 Low data-rate, short-range USB dongle transceiver in 433-MHz band. The STEVAL-IDS001V4 demonstration board is based on the SPIRIT1, which is a sub-GHz low power, low data-rate transceiver suitable for ISM bands and Wireless M-BUS. The board is equipped with an STM32L low power microcontroller to control the […]

  • 22/08/2023

    Silicon Labs xG28 Now Available; Helping Customers Like Chamberlain Group and Honeywell with Long-Range Applications at the Edge

    In June, we announced our dual-band FG28 SoC, designed for long-range networks and protocols like Amazon Sidewalk, Wi-SUN, and other proprietary protocols. Today, we’re excited to share that the FG28 is now generally available through Silicon Labs and our distribution partners. Learn more about the dual-band FG28 SoC here. We’re also extending our xG28 family of SoCs with the ZG28, […]

  • 31/07/2023

    FG25 Sub-GHz SoC Now Available for Smart Cities and Long-Range Deployments

    During our Works With 2022 Developer Conference, we announced our new flagship sub-Ghz SoC, the FG25, and today we are pleased to announce that it is generally available through Silicon Labs and our distribution partners. The FG25 is the ideal SoC (system on chip) for long-range, low-power transmissions, capable of broadcasting up to 1.6km with minimal data […]

  • 31/07/2023

    Smart City Living Lab Series: Making Hyderabad, India a Smarter City with Wi-SUN

    Specifically designed for smart cities, Wireless Smart Ubiquitous Network (Wi-SUN) is a protocol for low-power Internet of Things (IoT) mesh networks. With its scalability, security, interoperability, and support for a wide range of existing and emerging apps, Wi-SUN is an excellent foundation for sustainable city operations and, ultimately, better quality of life for residents. Cities around […]

  • 27/07/2023

    Smart City Living Lab Wi-SUN FAN 1.1 Mesh Deployment – Phase 2

    As part of the ongoing blog series on the Smart City Living Lab at IIIT Hyderabad, this second post will delve deeper into the details of the inner workings of the state-of-the-art Wi-SUN-enabled Smart City Living Lab. The lab, which stands as a testament to the immense potential of IoT in daily life, mirrors a Smart City on […]