Home > News > News Room > STMicroelectronics launches STSPIN9 high-current motor-drive series, revealing first highly scalable devices

News

STMicroelectronics launches STSPIN9 high-current motor-drive series, revealing first highly scalable devices

31/10/2023

STMicroelectronics has announced a high-current motor-drive series with the introduction of the first two STSPIN9 devices, targeting high-end industrial and home and professional appliances.

The 4.5A STSPIN948 and 5.0A STSPIN958 integrate PWM control logic and a 58V power stage with system protection and two operational amplifiers for current sensing. Suitable for driving brushed DC motors and bipolar stepper motors, both ICs allow flexibility and scalability while streamlining the bill of materials.

The STSPIN948 contains two full bridges that can be configured to work in different modalities giving developers flexibility to drive multiple and differently-rated motors in several configurations. With a choice of current control based on PWM with fixed off-time or a programmable threshold, the STSPIN948 can be used in five different modes. This 4.5A IC is packaged as a 7mm x 7mm VQFPN48.

The STSPIN958 contains a single full bridge that can be configured to drive two unidirectional motors, one bidirectional brushed DC motor, or one higher-current unidirectional motor by parallelizing the outputs. With the same choices of fixed off-time and programmable current control, as well as dual half-bridge, single full-bridge, and half-bridge parallel connections, this IC supports seven different driving methods. The 5.0A STSPIN958 is housed in a 5mm x 5mm VFQFPN32 package.

With their wide operating-voltage range and flexibility, the STSPIN948 and STSPIN958 motor drivers can be used in a variety of industrial applications. These include factory automation systems, textile machines, industrial and home robots, stage lighting, ATM and money handling machines, antenna controllers, vending machines, and most common home and industrial appliances.

Both drivers let the designer program the output transistors’ slew rate to 0.3V/ns, 0.6V/ns, 1.2V/ns, or 2V/ns using an external resistor, to guarantee the best trade-off between power consumption and electromagnetic compatibility targets. Dead time is built in to prevent shoot through and each MOSFET’s on-resistance of only 200mΩ helps maximize operating efficiency. The very short propagation delay, at 280ns, ensures fast dynamic response to system commands.

Each IC benefits from a complete set of protection features including overcurrent, overtemperature and short-circuit protection, and low bus-voltage detection with under-voltage lockout (UVLO).

Affordable and easy-to-use evaluation boards are available to accelerate development using these devices. The EVSPIN948 drives up to two motors using the STSPIN948, while the EVSPIN958 drives a single motor with the STSPIN958. Each is designed for use as an expansion card and is compatible with most STM32 Nucleo boards as well as the Arduino® UNO R3 connector.

Both devices are in production now, available from $1.42 for the STSPIN958 and $2.35 for the STSPIN948, for orders of 1000 pieces.

SPECIALIST NEWS
  • 08/09/2023

    RSA Design: LORA

  • 22/08/2023

    FG23 Wireless Sub-GHz SoC

    Silicon Labs’ wireless sub-GHz SoC enables Amazon Sidewalk, mioty, Wireless M-Bus, and Z-Wave Silicon Labs’ FG23 is the industry’s first wireless sub-GHz SoC with an Arm® Cortex®-M33, a dedicated security core and Arm PSA3 certification. The device improves on the leading RF performance of Series 1 and now enables 10+ year coin cell battery operation. The […]

  • 23/08/2023

    STEVAL-IDS001V3, Demonstration Board based on the SPIRIT1 Low data-rate, short-range USB dongle transceiver in 433-MHz band

    Description STEVAL-IDS001V3, Demonstration Board based on the SPIRIT1 Low data-rate, short-range USB dongle transceiver in 433-MHz band. The STEVAL-IDS001V4 demonstration board is based on the SPIRIT1, which is a sub-GHz low power, low data-rate transceiver suitable for ISM bands and Wireless M-BUS. The board is equipped with an STM32L low power microcontroller to control the […]

  • 22/08/2023

    Silicon Labs xG28 Now Available; Helping Customers Like Chamberlain Group and Honeywell with Long-Range Applications at the Edge

    In June, we announced our dual-band FG28 SoC, designed for long-range networks and protocols like Amazon Sidewalk, Wi-SUN, and other proprietary protocols. Today, we’re excited to share that the FG28 is now generally available through Silicon Labs and our distribution partners. Learn more about the dual-band FG28 SoC here. We’re also extending our xG28 family of SoCs with the ZG28, […]

  • 31/07/2023

    FG25 Sub-GHz SoC Now Available for Smart Cities and Long-Range Deployments

    During our Works With 2022 Developer Conference, we announced our new flagship sub-Ghz SoC, the FG25, and today we are pleased to announce that it is generally available through Silicon Labs and our distribution partners. The FG25 is the ideal SoC (system on chip) for long-range, low-power transmissions, capable of broadcasting up to 1.6km with minimal data […]

  • 31/07/2023

    Smart City Living Lab Series: Making Hyderabad, India a Smarter City with Wi-SUN

    Specifically designed for smart cities, Wireless Smart Ubiquitous Network (Wi-SUN) is a protocol for low-power Internet of Things (IoT) mesh networks. With its scalability, security, interoperability, and support for a wide range of existing and emerging apps, Wi-SUN is an excellent foundation for sustainable city operations and, ultimately, better quality of life for residents. Cities around […]

  • 27/07/2023

    Smart City Living Lab Wi-SUN FAN 1.1 Mesh Deployment – Phase 2

    As part of the ongoing blog series on the Smart City Living Lab at IIIT Hyderabad, this second post will delve deeper into the details of the inner workings of the state-of-the-art Wi-SUN-enabled Smart City Living Lab. The lab, which stands as a testament to the immense potential of IoT in daily life, mirrors a Smart City on […]